HIGH RISE CONDO SOHO, NEW YORK, NY

TECHNICAL ASSIGNMENT 1 October 5, 2006

Joseph Mugford The Pennsylvania State University Structural Option Faculty Advisor: Andres Lepage

TABLE OF CONTENTS

TABLE OF CONTENTS	2
EXECUTIVE SUMMARY	3
STRUCTURAL SYSTEMS	3
FOUNDATIONS	3
FLOOR SYSTEM	3
COLUMNS	4
LATERAL SYSTEM	4
CODE AND DESIGN REQUIREMENTS	5
CODES AND REFERENCES.	5
DEFLECTION CRITERIA	5
	~
MATERIALS	6
GRAVITY AND LATERAL LOADS	7
DEAD LOADS	7
LIVE LOADS	7
LATERAL LOADS	8
WIND LOADS	8
SEISMIC LOADS	9
CONCLUSION	10
APPENDIX	11

EXECUTIVE SUMMARY

The Soho high rise condominium project consists of 13 above grade stories and two below grade stories. The building encompasses roughly 175,000 SF stretching from 28 feet below grade to 175 feet above grade. The first floor houses highly marketable retail spaces while the remaining 12 stories are condominium units. A sub-cellar level is set aside for resident parking and the cellar level contains a pool lounge, exercise facility, resident storage spaces and mechanical rooms. There are also roof terraces and Jacuzzi pools located at the 6th Floor step back.

In the first technical report the existing structural conditions are introduced through a detailed description of the foundation, floor, column and lateral systems. Structural concepts were investigated including preliminary analysis of the lateral force resisting system. Spot checks of gravity loads and lateral loads were done on a typical floor bay, column and shear wall for discrepancies in design loads.

ASCE 7-05 was used to determine all wind and seismic loads. For wind loads Method 2 (analytical procedure) of ASCE 7-05 section 6 was used. Seismic design loads were established using the equivalent lateral force procedure set forth in ASCE 7-05.

STRUCTURAL SYSTEMS

Foundations

A Mat foundation ranging from 3-0" to 4'-0" provides the foundation system for the high rise. The 4'-0" thick section is located at the center of the sub-cellar around the elevator cores which make up the main lateral resisting system of the building. There are a few areas requiring the mat foundation to be stepped down to provide for sump and elevator pits. A 6" mud slab is located below the mat foundation.

Floor System

The floor system of the Soho high rise is typically a 10-1/2" two-way normal weight concrete flat plate with bays range in size from 13 feet by 21 feet to 25 feet by 25 feet. At the cellar level a 12" two-way slab is used to accommodate for mechanical equipment. Typical reinforcement is #4 @12" bottom steel and #5 @ 16" top steel. Additional reinforcement is located in some areas where the uniform steel was inadequate. This allows for a more economical rebar layout. At the tower transfer level or 6th floor deep beams and areas of thickened slab transfer the overturning moment and tower column loads from the tower into the structure below.

Between the ground level and sub-cellar a concrete ramp allows for vehicular traffic. The framing for the ramp differs to accommodate the varying requirements of the structure. It begins at the ground level with an 8" one-way slab between beams spanning from the 16" interior columns to the foundation wall. This is to accommodate the planter section located in the center of the ramp. The high aspect ratio would not allow for a two-way slab design. The next section is a 4" slab on top of the 12" cellar slab with the inter layer being taken up by a foam fill. The third section is a 14" deep two-way slab system. The remaining ramp is concrete infill providing a gradual slope to the sub-cellar level.

Columns

The columns in the Soho high rise are primarily standard reinforced concrete with varying sizes, shape and reinforcement depending on their location in the building. The most typical shapes are 20x14 and 12x19, both with 6-#9 bars as reinforcement. The total service loads vary greatly from column to column and are as large as 2000^{k} in one location and as low as 70^{k} in another at the foundation level. This may be a result of the atypical bay sizes, column heights and the load funneling effect of stiffer columns. There are also two concrete encased W21x201 w/ (2) 2 $\frac{1}{2}$ " web plates spanning between ground and third floor at the entrance lobby. This is most likely attributed to the architectural requirements of the designer for a narrower section than would be feasible with a concrete section.

Lateral System

Concrete shear walls make up the buildings lateral load resisting system. The two elevator cores have been used as the main components of these elements and are connected up to the seventh floor where they become independent sections. Mechanical and architectural penetrations have been allowed in several areas, but require specially detailed link beams to transfer the shear forces. Typical shear wall reinforcement is #4 @ 12" o.c. each way, but increases in some areas to accommodate for axial load and increased shear forces that must be resisted.

(West Elevator Core section shown)

CODE AND DESIGN REQUIREMENTS

Codes and References

- 1. "The Building Code of the City of New York".
- 2. "The New York City Seismic Code: Local Law 17/95".
- 3. "Building Code Requirements for Structural Concrete (ACI 318-02)", American Concrete Institute.
- 4. "Specification for the Design, Fabrication and Erection of Structural Steel for Buildings-Load and Resistance Factor Design," Second Edition, and "Allowable Stress Design," Ninth Edition, American Institute of Steel Construction.
- 5. "Minimum Design Loads for Buildings and Other Structures (ASCE 7-98)", American Society of Civil Engineers.

Deflection Criteria

Slab deflection Criteria

L/240 Total and L/360 Liv	e Load
---------------------------	--------

L/600 or $\frac{1}{2}$ " max for curtain wall support

L/1666 max impact loads for elevator support beams

Lateral Deflection Criteria

Wind allowable drift (total building):	H/500
Wind inter-story drift:	H/400
Seismic allowable drift:	H/400

MATERIALS

1. Con	crete:	
	a. Footings	F'c= 4000psi
	b. Foundation walls	F'c= 4000psi
	c. Slab on grade	F'c= 4000psi
	d. Floor slabs	F'c= 4000psi
	e. Shear walls	F'c= 4000psi
	f. Columns	F'c= 4000psi
2. Rein	nforcing Steel:	
	a. Rebar	ASTM A-615, Grade 60
	b. Welded Wire Fabric	ASTM A-185
3. Stru	ictural Steel:	
	a. Columns	ASTM A36 and A572- Grade 50
	b. Beams	ASTM A36 and A572- Grade 50
	c. Base Plates	ASTM A572- Grade 50 and 42 A588 Grade 42 and A36
	d. Bolts	ASTM A-325 and A-490
	e. Anchor Bolts	ASTM A-307/ ASTM A-325
	f. Weld Electrodes	E70XX
4. Met	al Deck and Shear Studs:	
	a. Composite Floor/Roof Deck	3" Galvanized
	b. Studs	³ / ₄ " dia. X 4.5"/6" headed stud

GRAVITY AND LATERAL LOADS

The gravity and lateral loads were determined in accordance with ASCE 7-05. Live loads were established using section 4 of ASCE 7-05. General assumptions for dead loads were made based on unit weights from ASCE 7-05 and interpretation of structural details and components. Gravity loads are as follows:

Dead Loads

Constr	uction	Dead	Loads:

Concrete	150 PCF
Superimposed Dead Loads:	
¹ /4" Glass and Framing	20 PSF
Partitions	20 PSF
Finishes and Misc.	5 PSF
MEP	10 PSF
Roofing	20 PSF
Terrace (pavers, planters, etc.)	150 PSF
Live Loads	
Typical Floor	40 PSF
Sub-Cellar	100 PSF
1 st Floor & Cellar	100 PSF
6 th Floor & Roof	100 PSF
Public Areas	75 PSF
Snow Load	30 PSF

Lateral Loads

A summary of both wind and seismic load analyses are in the following section. Please refer to Appendices A and B for a more detailed description of wind and seismic procedures.

Wind

Wind loads were analyzed using section 6 of ASCE 7-05. Appendix A contains a detailed analysis of wind loads using the equations and factors set forth in ASCE. These factors are dependent on building location and characteristics as well as experimental data. For ease of analysis the high rise was modeled as two rectangular boxes, one on top of the other. The tributary width for the tower in the N-S is roughly half of the base. This was taken into account in determining the resultant forces, but its effect on other variables has been considered negligible. Through a generalized analysis of the buildings fundamental period set forth in ASCE 7-05 the high rise condo was found to behave as a rigid structure. (*See the seismic analysis located in appendix B for the building period calculation*) Because the building is more than twice as large in the E-W direction the total wind load resulting from wind in the N-S direction. Also note that because story heights are not constant the wind distribution is not a perfect curve (i.e. at the first floor the story height is 19 feet while the typical building story height is between 12 and 13 feet).

	Loa	oad (k) Shear (k) Moment (ft-k		Shear (k)		nt (ft-k)
Level	N/S	E/W	N/S	E/W	N/S	E/W
Roof	82	14	0	0	14,367	2,384
12	71	12	82	14	11,379	1,880
11	71	12	153	25	10,529	1,739
10	69	11	224	37	9,471	1,557
9	69	11	293	48	8,639	1,420
8	67	11	363	60	7,593	1,241
7	65	11	430	71	6,593	1,070
6	64	10	496	81	5,706	922
5	98	32	560	92	7,540	2,427
4	65	21	658	124	3,780	1,201
3	64	20	723	144	2,859	902
2	61	19	787	164	1,967	615
1	81	25	848	184	1,547	470
Totals	930	208	930	208	91,970	17,828

Seismic

Seismic loads were found using the applicable sections of ASCE 7-05. All factors and accelerations were found using the tables and equations contained in ASCE and can be found in Appendix B. All dead loads used are based on ASCE 7-05 and are listed in the gravity loads section of this report. Because the high rise condo is narrow in the N-S direction relative to the E-W direction the seismic design was found to control over wind in the E-W direction.

					Load	Shear	Moment
	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	V _x	M _x
Level	(kips)	(ft.)	!		(kips)	(kips)	(ft-kips)
Roof	785	184.67	534,398	0.096	59		10,899
13	980	172.67	613,405	0.110	68	59	11,698
12	975	160.67	557,729	0.100	62	121	9,897
11	975	148.67	506,155	0.090	56	188	8,311
10	975	136.67	455,613	0.081	50	244	6,877
9	975	124.67	406,169	0.073	45	295	5,592
8	975	112.67	357,903	0.064	40	339	4,454
7	975	100.67	310,906	0.056	34	379	3,457
6	3,890	76.67	882,534	0.158	97	413	7,473
5	2,480	58	396,951	0.071	44	511	2,543
4	2,480	45	289,046	0.052	32	555	1,437
3	2,480	32	188,751	0.034	21	587	667
2	2,355	19	93,419	0.017	10	607	196
Totals			5,592,979	1.000	618	618	73,500

CONCLUSIONS

In the first technical report the existing structural conditions were introduced through a detailed description of the foundation, floor, column and lateral systems. Structural concepts were investigated including preliminary analysis of the lateral force resisting system. Spot checks of gravity loads and lateral loads were done on a typical floor bay, column and shear wall for discrepancies in design loads. An interior bay of the 10 ¹/₂" two-way flat plate slab was found adequate to resist slab moments resulting from typical uniform dead and live loads. Punching shear in a flat plate system is often a controlling factor in design and was analyzed at a 22 inch square column. The allowable concrete shear was found sufficient to resist this failure mechanism without the addition of drop plates. An interior column was checked for axial compression at the 7th floor level and found to be larger than required for axial compression alone. A more in depth analysis containing the interaction of the gravity and lateral loads in the structural frame as well as addressing serviceability requirements will be contained in a later report. I believe this column may be larger due to the increased stiffness required in the tower to reduce drift, the addition of moment at the column as a result of the rigidity of a concrete system and dimensions required to avoid punching shear as a failure mechanism. A shear wall section was also checked at the ground floor level. Self weight was assumed to be the only axial load action on the wall. This assumption allows for a preliminary check on the shear wall for lateral loads alone. Gravity loads can later be added in and vertical bars can be increased to resist the added axial load that results. The results of the gravity and lateral load spot checks have been presented in Appendices C&D.

ASCE 7-05 was used to determine all wind and seismic loads. For wind loads Method 2 (analytical procedure) of ASCE 7-05 section 6 was used. Seismic design loads were established using the equivalent lateral force procedure set forth in ASCE 7-05. The results of these analyses have been presented in Appendices A&B.

APPENDIX

APPENDIX-A	Wind Analysis
APPENDIX-B	Seismic Analysis
APPENDIX-C	Gravity Load Check
	1. Two-Way Slab
	2. Column
APPENDIX-D	Shear Wall Check
APPENDIX-E	Snow Load

Wind Analysis

APPENDIX-A

Exposure Class	В
Importance Factor I	1
Topographic Factor K _{zt}	1
Wind Directionality Factor K_d	0.85
Basic Wind Speed V (mph)	100
N-S Length of Bldg.	80
E-W Length of Bldg.	200
Ct factor in the N-S Direction	0.02
Ct factor in the E-W Direction	0.02

x= 0.75

No. of Stories	13			
Typ. Story Height (ft)	12			
Builidng Height (ft)	174			
L/B in N-S Direction	0.40			
L/B in E-W Direction	2.50			
h/L in N-S Direction	2.18			
h/L in E-W Direction	0.87			
	C _{p,windward}	$C_{p,leeward}$	$C_{\text{p,side wall}}$	Gust Factor
N-S Direciton:	0.80	-0.50	-0.70	0.91
E-W Direciton:	0.80	-0.28	-0.70	0.91

GUST FACTOR				
	N-S	E-W		
L	80.00	200.00		
В	200.00	80.00		
n ₁	1.04	1.04		
TYPE	RIGID	RIGID		
z _{min}	30.00	30.00		
С	0.30	0.30		
l _z	0.25	0.25		
h	174.00	174.00		
Lz	469.76	469.76		
_	320.00	320.00		
z	104.40	104.40		
epsilon hat	0.33	0.33		
Q	0.97	0.98		
9 _Q	3.40	3.40		
g√	3.40	3.40		
G	0.91	0.91		

Totals	_		_		18.0		_						13.0	Heights(Level
	19	13	13	13	57	12	12	12	12	12	12	12	1 72	ft)	Leve
	1	2	ω	4	ഗ	6	7	8	9	10	11	12	Roof		
	19	32	45	58	76.67	88.67	100.67	112.67	124.67	136.67	148.67	160.67	174.34		hx
	0.62	0.76	0.81	0.85	0.93	0.96	0.99	1.04	1.09	1.09	1.13	1.13	1.17		Κz
	13.49	16.54	17.63	18.50	20.24	20.89	21.54	22.63	23.72	23.72	24.59	24.59	25.46		zb
	9.83	12.05	12.84	13.48	4 14.74	15.22	15.70	16.49	17.28	17.28	17.91	17.91	18.55	NS windwar	
	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	d NS leeward	
	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	9 -15.	NS side wall	Ψ
	68	68	68	68	68	68	68	68	68	68	68	68	88	EW windw	ressures
	9.86	12.09	12.88	13.52	14.79	15.27	15.75	16.54	17.34	17.34	17.97	17.97	18.61	ard	
	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	-6.40	EW leeward	
	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	-15.73	EW side wall	
930	81	61	64	65	86	64	65	67	69	69	71	71	82	N/S	Loa
208	25	19	20	21	32	10	11	11	11	11	12	12	14	E/W	d (k)
93(848	787	723	658	56(496	43(363	293	224	153	28)	N/S	She
208	3 18-	7 16-	3 14-	3 12-	36 (8) 7:	3 6(3 48	1 37	3 2!	1-)	E/W	ar (k)
91,970	1,547	1,967	1 2,859	1 3,780	7,540	5,706	6,593	7,593	3 8,639	7 9,471	5 10,529	11,379) 14,367	N/S	Mome
17,828	470	615	902	1,201	2,427	922	1,070	1,241	1,420	1,557	1,739	1,880	2,384	EW	nt (ft-k)

Mugford 13 of 25

(4 ^{)K}	1 ROOTE	174
12,12	13*"	160'
	12TH	148
	E /1TH	136
	10 ^{TP1}	124
11 k	914	112'
	5"	100'
10 ^{fe}	A141	80'
32*	. 6TH	76'
21"	151	56'
20 "	1 1 - 4 ⁻¹⁴	45'
19 K	300	32
25"	-2.Nº	19

E-W WIND

Wind Distribution for Wind in the E-W Direction

N-S WIND

Wind Distribution in the N-S Direction

Seismic Analysis

APPENDIX-B

Mugford 15 of 25

	SEISMIC DESIGN		3/2
	TYP FLOOR LOAD PARTITIONS 20 PSF FIN. & MISC. 5 PSF MEP 10 PSF 102" SCARS 132 PSF COLUMNS 10 PSF 177 PSF	TYP. TRADUCE LOAD TERRACE ISO PSF FIN & MISC. S PSF MEP ID PSF 10/2' SLAB I32 PSF	
en e	GTH FLOOR FARTITIONS 20 PSF FIN. 2 MISC. 5 PSF MEP 10 PSF 12" GLAB ISO PSF BEAMS 2 GLAB ADP. 25 PSF COLUMNS 10 PSF 220 PSF	5th FLOOR TRAMALE TERRACE ISO PSF 12" SLAB ISO PSF MEP IO PSF FIND MISC. <u>SPSF</u> 315 PSF	
	ROOF NEP 10 PSF ROOF 20 PSF SLAB 132 PSF MISC. 5 PSF 167 PSF		

Two-way Slab Spot Check

APPENDIX-C1

Mugford 17 of 25

$$\frac{2}{1000}$$

$$\frac{10000}{1000} = \frac{10000}{1000} = \frac{100000}{1000} = \frac{10000}{1000} = \frac{10000$$

			R
0	$\frac{MIDDLE_{SIEIP}}{Support}$ $M_{n} = \frac{M_{v}}{b} = \frac{B1.5^{14}}{.9} = 90.6^{14} k = \frac{M_{r}}{16} = 100000000000000000000000000000000000$	90.6(1) = 81.3 Ps'	
	$p \text{ from bable A.Sa} = 0.0015$ $A_{0} = pbd = 0.0015 (9.44)(150) = 2.12 \text{ jm}^{2}$ $A_{0} = pbd = 0.002 (150)(10.5) = 3.15 \text{ in}^{2} (met b/c 2)$ $N = 3.15 \text{ jm}^{2} = 10.2 \text{ bars}$ $A_{CTWAL} = 0.516 \text{ N}$ $\# S @ 16' 0.2, \longrightarrow 10 \text{ bars} > 10.2 \text{ bars}$ $MID \text{ SPAN}$	evertains of steel present)	
	$M_{n} = \frac{M_{o}}{0} = \frac{70'^{k}}{0.9} = 77.8'^{1k} \qquad R = \frac{M_{o}}{5d^{2}} = \frac{77.9}{(150)}$ $pfrin tuble ASa 0.00125$ $As = \frac{pbd}{0.00125} = 0.00125 (9.5)(150) = 1.76 \text{ in } 2$ $As = \frac{1}{1.78} = 0.002 (150)(10.17) = 3.15 \text{ in } 2$ $N = 1.78 = 8.9 \text{ bars} \qquad \text{Actual design tend}$	$\frac{B(12)}{(9.5)^2} = 68.9 P^{42}$ $(9.5)^2 = 12.5' bars.$	

Publit ND SHEAR.
Wh = 2765 Per

$$\frac{1}{3^{1}c^{-2}}$$
 (aso pring)
 $\frac{1}{3^{1}c^{-2}}$
 $\frac{1}$

Gravity Column Spot Check

APPENDIX-C2

Floor	Tributary Area ft ²	Dead Load PSF	L_{o} PSF	Influence Area ft ²	Reduction	Live Load Kips	Dead Load Kips
Roof	271.875	167	30	1087.5	1	8	45
13	271.875	132	40	1087.5	0.704859	16	81
12	543.75	132	40	2175	0.571634	20	117
11	815.625	132	40	3262.5	0.512613	25	153
10	1087.5	132	40	4350	0.477429	29	189
9	1359.375	132	40	5437.5	0.453419	33	224
8	1631.25	132	40	6525	0.435695	36	260
7	1903.125	132	40	7612.5	0.42192	40	296

Column 68

L ₁	18.75		
L ₂	14.5	1.2D+1.6L	420

Shear Wall Spot Check

APPENDIX-D

$$\frac{1}{16} \frac{1}{6} \frac{1}{6} \frac{1}{12} \frac{1$$

Snow Load

APPENDIX-E

